
1118 Iu, P.GulIaev and V.S.Lerukll 

velocity of the unloading wave 
a,9 + 200% - 3aa*ur = 0 (3.7) 

Solving (3.7) we find 
b(Oj=h 

K 
$ + 3y_2%] (3.8) 

Formula (3.8) holds even in the absence of the delayed yielding effect, and is presen- 

ted in [4]. 
The expressions obtained for the initial velocity of the unloading wave will be the 

starting point for constructing all unloading waves by the method of characteristics. 
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The problem of existence and stability of steady helical motions of a rigid body bounded 
by a simply connected syrface, was studied by Liapunov [l], using the Routh’s theorem 
and its complement. Steklov in @] established the ex$tence of steady helical motions 
of a rigid body bounded by a multiply connected surface. Below we investigate the sta- 
bility of the motions found by Steklov using the Routh’s theorem and the Liapunov’s com- 

plement, and we obtain the necessary conditions as well as some sufficient conditions of 

stability. 

1, Let us suppose that a rigid body with several cavities filled with a perfect fluid, 
moves in an infinite, homogeneous, incompressible perfect fluid. We assume that the 
space occupied by the fluid (bounded by the surface of the body) and the cavities, are 
all multiply connected, We also assume that no forces act on the body and the fluid and 
that the motion of the fluid is irrotational. Taking any three mutually perpendicular 
straight lines rigidly connected to the body as the OXYZ -coordinate system, we shall 
denote the projections of the velocity of the origin on these axes by u, v and w and by 
p, p and r the projections of the angular velocity of the body. The principal rotations 
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will be denoted by ki and kj’ (i = i,..., n), (j = I ,..., m). 
Then, as shown by Steklov, the equations of motion are 

where T is the kinetic energy of the combined motion of the rigid body and the fluids, 
while q and & are certain constants dependent on the form of the body, on the cavities 

and on the cyclic motion of the &rid, Symbols (ULL’F, ppr, 123) are permuted cyclically 
to yield the required equations. Equations (1.1) admit three first integrals 

Following [ill let us perform the following change of variables 
aT 3T aT 3T aT 7=1X L- -=z -= -= v= 
dr ’ im --y* aw ’ ap G aq ‘1* z L 

Suitable choice of the coordinate system yields the following expression for T 

2T = Sa& + ZSor,ty + 256~ r: + 2Sb, (A + Zq) + Se&’ + c 

4j = WV hi = bj$s Q>O (i = i, 5 31, (i* % 2, 3)(h<CI<Q) 

Here and in the following, S denotes the summation of three terms obtained by simul- 

taneous cyclic permutation (zyz. Es&. 123) of the terms under the s sign. Then the equa- 
tions defining the steady helical motions. become 

@ll - AI 2 + h* + bl2r + C&f = fI& W2) 

(aI1 - PI = f =1Jl+ =lJz + (611 -~)E+htrl+h&=ph+Aarr 

(=w. La. 12B) 

Let us put, for brevity, 

@,t - hp “J bit* 

%=%- C‘ --q----erg 

*fiibgj @ii-W b,j 
-- 

Aij=aij- ek 

_ bjf Cbjj - A) 

5 cr 

(i = i,2,3;i=i,53;k= is&C% i#i,i+k ifk) 

Inserting f, 9. and fobtained from the first three equations of (1.2) into its last three 
equations, we obtain (All -p) I+Al,y+AI,a=@l 

fr Y 2. 1 2 2) 
(i-3) 

Tbe necessary condition for (1.3) to have a solution is that 

det 0 A,j )Lb,j I# 0. 6 
1 

0 ={I - 
holds. ij 

= 

0 (i#d 
(is i = 1, 2, 3) (1.N 

Using (1.3). we can obtain t, y and z and, consequently..& ‘1 and b , for each value 
of c satisfying (I. 4). Thus we can obtain steady helical motions by assigning to I any 
real values. Each value will have a corresponding infinite set of helical motions, whose 
axes will not coincide with the axes of the second order surface 

SA,,r’ + 2SAu 2s = Mnst 

8, We shall now investigate the stability of the steady helical motions relative to the 
z, Y, s, &, tl and r variables, assuming that in the perturbed motion we have 
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2’ = 2 + a+, &’ = & + ag, @YZ. EtltJ 
Let us apply the Routh’s theorem, assuming that 

(2 + B,)‘?- (V + B,,' + (2 3 B212 = h2, S @ + PI) (E +ad = d (2.1) 

and, that &z, dy, ?IZ, at, 8’1 and ag are the increments of I, y, z, f, r~ and E not affect- 
ing the constants k and g. We shall denote the corresponding increment in T , by bT. 

20 = s (‘411 - I4 @I)* + 2SA&bz + SC1 (6&# (2.2) 

In the new variables, conditions (2.1) become 

2s (r + fl,) 62 + 8 (&r)2 = 0 

Let us now assume that pit or, and pa are the roots of the equation det rL A<j - & 1 = 0. 
Motions with p < JII minimize T and are, consequently, stable at least with respect to 
the perturbations not affecting h and 6. 

Let us now consider the case (r, > ~1. Since the values &I, by, bz, &k, .o1), 6E which 

concern us are vanishingly small, we can replace (2.3) with 

2S(z + PI, bt = 0, SX~t-s(z+p3Mo=O (2.5) 

To obtain the sufficient and necessary conditions for T to be minimum, we shall seek 

a minimum of the function (2.2) under the conditions (2.5) and 

8 @r)S = 0 

The necessary condition for T to be minimum is, that min bT > 0. On the other hand, 

if min 6T = 0 only when C = 0, then the conditions obtained will be sufficient. Seeking 
the minimum of 7, we arrive at the following system of equations 

(~n-~--)61.+Alnsy+Alssz+(~+83m+X~=0 (2-b> 

c&l-(z+&)~=O (XP. Enr;. 1w 

Inserting & 6% and &co from (2.6) into the second equation of (2.5). we obtain 

SX6t-El=0 
The system of five equations ( 

H = s (* -tJ Pa)’ 
Cl > 

(A II-P- k) 6~ + A12hy + Al$z + 0 + f&l m + Xl = 0 WV. 12s) 

s (2 + Bl) bt = 0. SXh-Hl=O (2.7) 
is linear and homogeneous in 6+, &y, i~z, m and 1 , consequently k is given by 

.%I - p -k At An LIT+- b X 
A31 r&-p- k AZS Y+ Y 
41 AS2 &-p-k z +; Z=O 

+ + 31 Y-i-32 ztlk 0 0 
X Y Z 0 --R 
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whose roots are all real. Equations (2-6) and the relevant conditions, yield 

Z&T = kt? 

Minimum value of bT and the least root k , have the same sign and Eqs. (2.7) become 

NhsA-? - Pk + ii = 0 (2.8) 

P = S I(g + &) 2 - (L + &) I’]’ j IIS (A,, -Jo + Aa -p] (+ _i &)* - 

4HS-4, (a, + f&t (2 + 83 

R = S(A11 - 16 t(v i B,) 2 - (2 + @a) 1’1” $2 SA,s I(= + @I) Y -(v + 83 zl* + 

I/S (A, .- tWb--I’)-A al (2 -i- lb)’ + MS IAeAn - (Au - 14 A,1 (u + &) 0 + BI, 

Conditions of positiveness of k are expressed by two inequalities P > 0 and R > 0. 
We shall show that these conditions can be satisfied for k = 0 and, when p < ps. Let 

us write T in the following form: 
?T = SAs,*cs f 2SAp*ys f S -$ 

where A$ denote the values of the function Aij when 1 = 0; I, Y and I depend, in this 

case, only on Aij and Y. 

Starting with any given values of s, Y and z we can obtain any X, Y and Z by a suit- 
able choice of the coefficients’& (at the same time the coefficients afj should be varied 
in such a manner, that A#and, consequently, I, Y and : are not aliered). 

We shall choose the matrix (Ati*) to be positive definite. When p >k, the quadratic 
form of the unknowns 

1(x -+ 91) y - (Y + &) Xl #la. XYZ. izs) 

entering the expression for R can be positive-for some values of ?, Y and Z , and we 
shall select these values as the initial ones. Increasing them proportionally, we can now 
make R positive, and contin~g this process even further (if required) we can make P 
positive, 

Thus we have shown that stable motions are possible under the perturbations not 
affecting h and g , when p < ps. Sufficient conditions of such a stability are : P > 0 
and R > 0. 

If, amongst the motions corresponding to the values of h and g differing infinitesi- 
mally from those defined by the motion discussed above, a motion exists which differs 
from the latter by an infinitesimal amount, then we shall say that this motion varies con- 
tinuously with h and g. Let us find the conditions of such continuity. Eqs. (1.3) yield 
the following differential equations : 

(Ala - p) dx + A& -;- A& - (x + $,) dp + XdA = 0 GWG w (2.9) 

In addition,we have 

S (z + fl,) dt = 2hdh, S (E + at) d+ + S (t -i- fM dE = ds (2.10) 

On the other hand, if E, u, 5, di, dq and d; in (2.10) are replaced by the corresponding 
expressions obtained by differentiating the first three equations of (1.2). we obtain 

SXdr-Hdh= -dg (2.U) 

Five Eqs.(2.9).(2.10) and (2.11) yield the values of dr, dy, dz, dp and cii. in terms of 
the given dg and dh’ , provided that the determinant of these equations does not vanish. 

Expanded form of this determinant is given byR(2.8), and the motions for which H 7 0, 
are unconditionally stable, 

Thus, using the Routh’s theorem with the Liapunov’s complement we have shown that 
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unconditionally stable motions exist for fi < p3. 
Sufficient conditions of stability are : 

R>O, P>O 
3, Let us now write the equations of perturbed motion 

Here the subsctipt b denotes the result of replacing z, y,... in Ni’iat, cU%%*~ withbr, 

by,... . Let us put a&T 
-=(lll 
w 

(f4. ur) 

Then 
2&T=%++ 2.4 = S (AU - a) (&)i + 2SA&&: 

Assuming a = S (blr - h) / cx+ and following [l] we reduce system (3. I) to the form 

0-2) 

--I~--oY-i-&)l* 

We shall seek a particular solution of (3.2) 

USA, lb + h) fh - tl: + B,I es] I+ 4 6d e, - (V + Bd fhl 

Rtt = (42 - p)(r $ B,,’ i- (4, -r%i + fw - %a tu + B*) @f 8) 

B, = Al, (z + fh,b + 83 - Al, (2 + fW + 83 - 

-4, (z + IV - (An -jw+Br)(~+83 
(2 if t, 12s) 

On eliminating yt, y, and ys, (3.2) becomes 
aI 

’ ~~+(Y-~~(yiB*~J~~~-1Z-~~ziPt~l~=O K’s 
(q/Z* XYZ. 123) 

from which we eliminate e,, e, and 6, to obtain the required equation 

det!:CijJ!=O (f. i= 1, 2, 3) 
P 

cii=%+T; 
c I* = Bt* - IZ - 0 (z i ~~~1 k, C,, = B, - IX - u (r + @,)1 k 

CIZ = BIZ + tY - a (I/ + &,I k, C,l = &I - [Y - a tv + 831 k 

c rl=b+ W-o(z+Bs)lkr c,=B,+ IX-a(z+fb,]k 

which has two zero roots. 

Dividing throughout by A9 , we obtain 

s+V+R=O 

(3.3) 
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The quantiq R appearing here is obtained from (2.8). while for Q we can have 

Q&G [x-s(r$B,)]siHS*- 

- s (Au - P’) 
(= -t 91)’ _ 2s 4 (Y + &) 0 + Pa) 

cl* .t) crcl 
The necessary condition of stability is that Eq.(3.3) has no roots with positive real 

parts, and this is equivalent to the following conditions: 

Q'- -&+@ 020. R>O (3.5) 

These necessary conditions become sufficient for stability in the first approximation, 

if we neglect the equality signs in them. We shall now show that for sufficiently large 

As, conditions (3.5) can always be satisfied when p > p, . Let i 4 00. We then have 

Af, 
-++O(+), &I(+), &$&++(+) as 

and 
(i=l, 2, 3)\lh$ =---k)kfi) 

h 1 Y 
;imF=-kki=vT 

Let us now vary p with 1 simultaneously and in such a manner, that 

]im IL=- 
&9tc ‘.’ 

tfe (e > 0) 

where e is a small number. Obviously, when a is sufficiently large, then c > k. 
Assuming that 

we find from Eqs. (1.2) dividing them by 12 , 

and hence 
lim 1. (r + 81) _ 1 

A+ea Q 
,I 

Elk-i 

Choosing e sufficiently small, we have 

PYZ. ‘25) 

(q/z, .Yyz “3) 

and we easily see that all stability conditions hold in the first approximation. Similarly, 
they can be satisfied when k =pl + c. On the other hand, when c = b + e , then for 
sufficiently large A and sufficiently small c , the necessary conditions of stability are 
violated. 

Thus we have shown that, when p > pa,. then motions exist which are stable in the 
first approximation. while when )( is almost equal to 14, then the motions are unstable. 

The author thanks V. V. Rumiantsev for help. 
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Perturbed resonant solutions of an essentially nonlinear real system containing two phases 
and a quasiconstant vector, are constructed over an infinite time interval. The first Lia- 
punov method and well known Weierstrass theorems on implicit functions are used to derive 

the sufficient conditions of stability of perturbed resonant motions. The results obtained 

are interesting and may find application to certain problems of the theory of nonlinear 
oscillations. 

1. Statrment of the problem, We investigate, in the resonant region, a per- 
turbed system of (! + 2) equations of the form 

da I dt = EA (&a, 9, e) 

d$ / dt = Q (0) + eY (8, a,$, e). de!dl=a(rr)+e~(e,o,lD,c) (1-i) 

Here t E ito, (x) is time, e E [- ~0, PO) is a small parameter, u is a quasiconstant 
1 -dimensional vector ( I 0 - a~* I< b) , while $ and 6 denote scalar phases ( 1 I# 1, 18 I< 
<c-= ). We assume that the functions A, Q, Y, a and ,l; are sufficiently smooth in all 
their arguments within the indicated region and are periodic in 6 and \p , the periods 
being equal to 21 / v and ZJX, respectively. The degree of smoothness shall be established 

below. We also assume that at least one of the phases, say 6, is rotating, i.e. u (u) > 0. 
We construct solutions of (1.1) and investigate their Liapunov stability. These solutions 

are such that when e = 0 then they have the form 

QU, 90 = a ((10) (f - to) + a, 00 = a (ao)(t - 10) + B 

while for t # 0 they do not differ appreciably from the above magnitudes for all real 
i (in the above expressions 00. a and p are certain constants). In the present paper we 

study the resonant case, when nrQ (ao) = nm (ao) (1.2) 

where m and R are “not very large” integers [l] and R may become equal to zero, i.e. 
the phases $ may be oscillating. 

System (1.1) appears in many’ problems of the theory of nonlinear oscillations and in 
particular, in the problems on forced motions in a system with one degree of freedom 
and little varying parameters, in certain strongly connected autonomous systems, e. a. 

Similar systems were investigated in p and 31 using the concept of averaging over the 
interval 61 - J / I/F A particular case of the system (1.1) (1 = 1, 8 f \;r) was inves- 
tigated by the author, who considered its general and particular solution [4 and 53 over 

the interval f E [b, 09). 


